Data Loading...

sub topic 3 8 Flipbook PDF

sub topic 3 8


139 Views
36 Downloads
FLIP PDF 995.34KB

DOWNLOAD FLIP

REPORT DMCA

3.8 Application of Integration Area and volume of bounded region

x-axis 𝑏 Area = ‫π‘₯𝑑 𝑦 π‘ŽΧ¬β€¬ 𝑏 Volume = ‫ π‘¦πœ‹ π‘ŽΧ¬β€¬2 𝑑π‘₯

y-axis 𝑏 Area = ‫𝑦𝑑 π‘₯ π‘ŽΧ¬β€¬ 𝑏 Volume = ‫ π‘₯πœ‹ π‘ŽΧ¬β€¬2 𝑑𝑦

Example : a) Find ythe area for the x-axis

b) Find the area for the y-axis y

3

π‘₯ = 𝑦2 + 2

𝑦 = π‘₯2 1

x

1

2

x

0

A=

2 ‫׬‬1 π‘₯ 2

𝑑π‘₯ = 8 3

π‘₯3 2 3 1

1 3

A= 7 3

= βˆ’ = 𝑒𝑛𝑖𝑑𝑠 2

3 ‫׬‬0 (𝑦 2 +2)

𝑑π‘₯ =

𝑦3 3

+ 2𝑦

3 0

= 15 βˆ’ 0 = 15 𝑒𝑛𝑖𝑑𝑠 2

Example : c) Find the area for the x-axis y

A=

𝑦 = 4π‘₯ βˆ’ π‘₯ 2

4 ‫׬‬0 (4π‘₯

βˆ’

π‘₯ 2 ) 𝑑π‘₯

=

4π‘₯ 2 2

3 4 = 2 4 2βˆ’ βˆ’ 2 0 3 0

x 4

=

32 βˆ’ 3

0=

32 𝑒𝑛𝑖𝑑 2 3

βˆ’

4 π‘₯3 3 0

3 0 2βˆ’ 3

d) Given an equation, 𝑦 = π‘₯ 2 + 6. Find the area under the graph bounded by the curve, y-axis. The line 𝑦 = 12 and 𝑦 = 16. Solution : Area bounded 𝑦 = 12 and 𝑦 = 16. π‘₯ = (𝑦 βˆ’ 6)1/2 ∴

16 ‫׬‬12 (𝑦

βˆ’ 6)1/2 𝑑𝑦 = =

=

(π‘¦βˆ’6)3/2

16

3 2

12 2 [(16 βˆ’ 6)3/2 βˆ’(12 βˆ’ 3 2 [(10)3/2 βˆ’(6)3/2 ] 3 2 16.926 3

= = 11.284

6)3/2 ]

Example : e) Find the volume of the solid generated by revolving the region between the x-axis and the parabola for the x-axis 𝑦 = 4π‘₯ βˆ’ π‘₯ 2 through a complete revolution about the x-axis.

Solution : Find the x-intercepts of 𝑦 = 4π‘₯ βˆ’ π‘₯ 2 When 𝑦 = 0 ;

0 = 4π‘₯ βˆ’ π‘₯ 2 , π‘₯ = 0 π‘œπ‘Ÿ π‘₯ = 4

4

V = πœ‹ ‫׬‬0 (4π‘₯ βˆ’ π‘₯ 2 )2 𝑑π‘₯ 4

= πœ‹ ΰΆ±(16π‘₯ 2 βˆ’ 8π‘₯ 3 +π‘₯ 4 ) 𝑑π‘₯ 0

=πœ‹

16π‘₯ 3 3

βˆ’

8π‘₯ 4 4

+

4 π‘₯5 =πœ‹ 5 0

16π‘₯ 3 3

βˆ’ 2π‘₯ 4 +

4 π‘₯5 5 0

=πœ‹

=πœ‹

16 4 3

3

16 4 3

3

5 4 16 4 4 βˆ’2 4 + βˆ’( 5 3

3

4 5 16 0 + βˆ’ 5 3

3

βˆ’2 4

4

1024 1024 =πœ‹ βˆ’ 512 + 3 5 πŸ“πŸπŸ = 𝝅 π’–π’π’Šπ’•πŸ πŸπŸ“

5 4 βˆ’2 4 4+ ) 5

βˆ’2 0

4

0 5 + 5

4

0

Exercise : a) Find the area of the region bounded by the parabola 𝑦 = 2π‘₯ 2 βˆ’ 13π‘₯, the x-axis and the lines x = 0 and x =5.

b) Find the area of the region bounded by the parabola x = βˆ’(𝑦 βˆ’ 4)2 , the y-axis and the lines y = 0 and y = 4.

c) Figure shows a region bounded by the curve 𝑦 = 4π‘₯ βˆ’ π‘₯ 2 , and the line 2π‘₯ + 𝑦 = 8. Determine the volume generated when the region R is rotated through 3600 about the x-axis. 𝑦

8 2π‘₯ + 𝑦 = 8 𝑅 𝑦 = 4π‘₯ βˆ’ π‘₯ 2

π‘₯ 0

2

4

d) Figure shows a region which is enclosed by the graph of 𝑦 = π‘₯ + 1 and y = (π‘₯ βˆ’ 1)2 . Compute the volume of solid revolution formed when the shaded region is rotated 3600 about x-axis. 𝑦 y = (π‘₯ βˆ’ 1)2 𝑦 =π‘₯+1

0

2

π‘₯

e) Calculate the generated volume between the curve 𝑦 = 5π‘₯ βˆ’ π‘₯ 2 , x –axis x = 3 and x = 5 on figure below.

𝑦 𝑦 = 5π‘₯ βˆ’ π‘₯ 2

6

0

π‘₯ 3

5

The end……. Good luck